

MASLOWATEN

MArket uptake of an innovative irrigation Solution based on LOW WATer-ENergy consumption

Electric pump units selection and sizing in Photovoltaic Irrigation Systems

Alessandro Bertazzoni

Area Manager

Caprari S.p.A.

Via Emilia Ovest 900, 41123 Modena

www.caprari.com – tel. 059 897611

CAPRARI SPA: Center of excellence for Pumps & Electric Pumps

Subsidiaries

CAPRARI PUMPS Australia

BOMBAS CAPRARI Spain

CAPRARI FRANCE France

CAPRARI TUNISIE Tunisie

CAPRARI PUMPS SHANGHAI CO. China

CAPRARI HELLAS Greece

CAPRARI PUMPS United Kingdom

Germany

CAPRARI PORTUGAL LDA Portugal

Network

DOMESTIC NETWORK

- Caprari Headquater
- Milan Branch office
- 17 Service Centres
 INTERNATIONAL
 NETWORK
- 9 Subsidiaries
- +40 International strategic sales and service partners
- +20 Exclusive Distributors

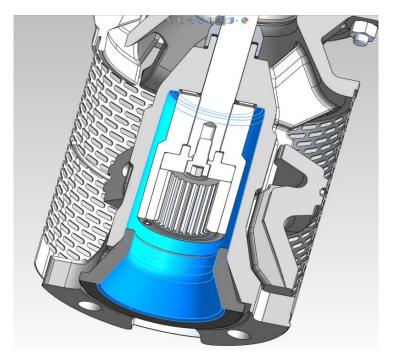
A strong network of distributors, agents and partners engaged for over 50 years in 96 countries

For all the **professionals** of the **Integrated Cycle of Water**, Caprari is :

- The benchmark for high reliability and high efficiency for clean water
- The leading specialist in surface and deep well clean water pumping systems
- Reference in agricultural applications worldwide
- The **choice** of **value** in sewage pumping and drainage
- **Specialized** partners in heavy duty applications

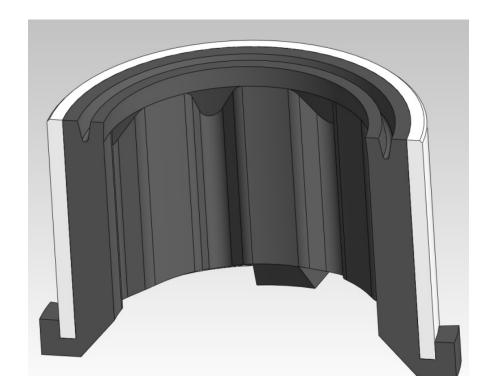
Boosting and Distribution of surface water

the **benchmark** in high pressure surface pumping



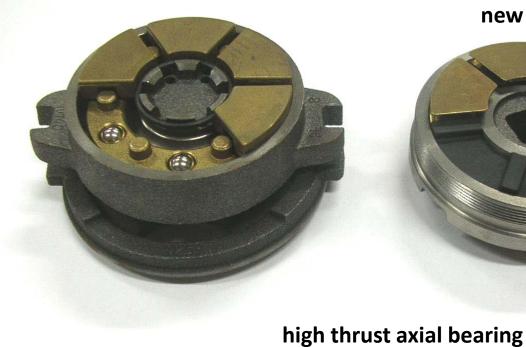
Product innovation
 Improving life

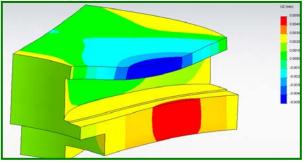
corrosion inhibitor

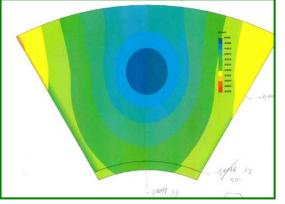

sand wear protection

Product innovation Improving reliability

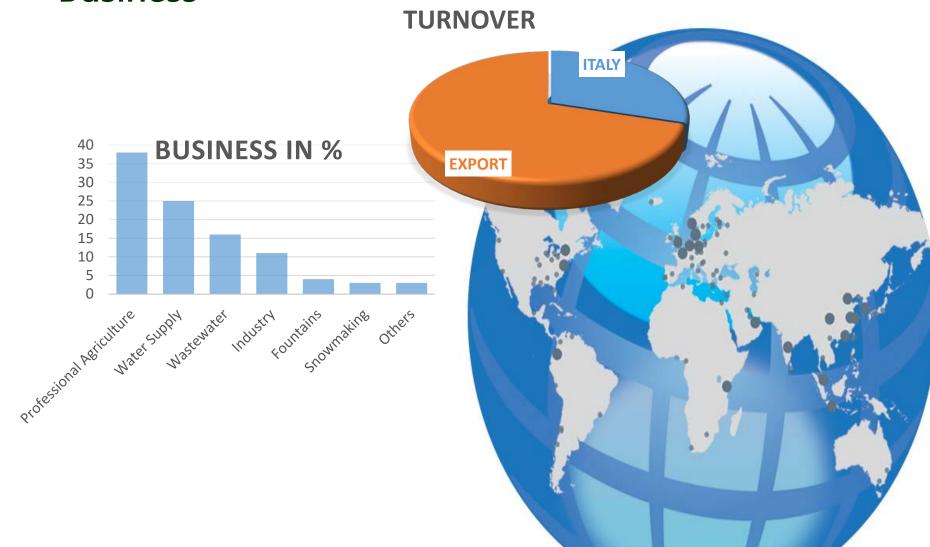
improving maintenance & reliability


improving efficiency & reliability




Product innovation Improving performances & reliability

old/standard design



Business

MASLOWATEN PROJECT

OPPORTUNITIES	CHALLENGES	PUMPING SYSTEM
Photovoltaic energy (PHe) is free	PHe is not constant in the day and in the seasons ⇒ oversized plants (higher investment costs)	The choice of the PV orientation system (fixed / east-west) determines the choice and management of the electric pump
Variable frequency (Hz) of the PH network	The electric pumps must be selected at variable speed to use the greatest amount of PHe	The joint evaluation of the slope of the pump's Q / H curve and of the system resistive curve are fundamental
Scalability of plants / investments	The introduction of a PH system can be studied in sectors / blocks	The use of several pumps in parallel meets many needs
Possibility of integration with traditional energy systems (Diesel / Grid)	Integration must be easy to manage	Pumps and asynchronous motors of robust construction and high energy efficiency facilitate integration
Analysis of present and future context	Plants must be efficient even after changes in the context	The variable speed makes possible to size the electric pumps, also providing for changed operating conditions

Five demonstrators

The electric pump units

Alter do Chao: PORTUGAL n.1 unit ESOB+M (PV) drip i. n.1 unit ESOB+M (PV-Gen) drip i. n.1 unit ESOB+M (Gen) drip i. Tamellalt: MOROCCO n.1 unit ESOB+M (PV-Gen) drip i. n.1 unit ESOB+M (PV-Gen) drip i. **Alaejos-Valladolid: SPAIN** n.1 unit MSS (PV-Gen) tank n.1 unit ESOB+M (PV-Gen) pivot Villena-Alicante: SPAIN n.1 unit MSS (PV) tank **Uri-Sassari: ITALY** n.1 unit MSS (PV-Grid) tank n.1 unit MSS (PV-Grid) tank n.1 unit ESOB+M (PV-Grid) sprinkler

Hybrid PV+Diesel n.3 MEC-MR100/2D+45kW Hybrid PV+Grid n.2 MEC-A4/125C+45kW Hybrid PV+Diesel n.1 E8P135-8/10C+MAC8125 n.1 MEC-A2/80A+30kW PV n.1 E12S42-12/5A+MAC12300/1C Hybrid PV+Grid n.1 E4XP30/21+MCK43-8V n.1 E6SX50-6/14A+MACX625/2B n.1 MDT50+7,5kW

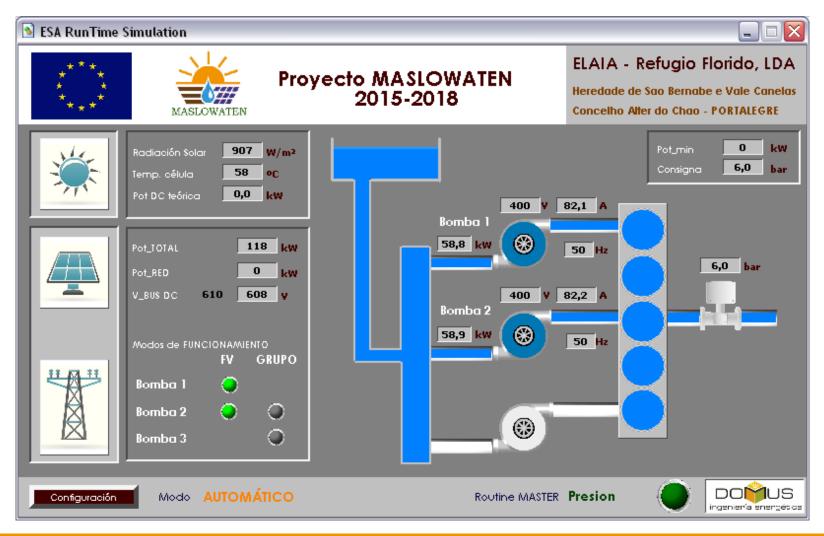
Alter do Chao: PORTUGAL – Hybrid PV+Diesel

Owner : ELAIA (Herdade sao Bernabe)

Annual water needs : 334.000 m³ HMT : 70 m Flow : 2x 34 l/s

System Configuration

PV Generator:	140 kWp	2
PV Trackers :	1 x H1250 multi-row (7 axes)	00
Inverter :	3 x 55 kW	
Pumps :	n.3 x Caprari MEC-MR100/2D+4	5 KW
Irrigation System :	already exist (drip)	
Expected water production : 300.000 m ³ (80% FV- 20% DIESEL)		
Irrigation System : already exist (drip)		



Alter do Chao: PORTUGAL – Hybrid PV+Diesel

Alter do Chao: PORTUGAL – Hybrid PV+Diesel

CAPRARI MEC-MR100/2D

Tamellalt: MOROCCO – Hybrid PV+Grid

Owner : ELAIA (Soprolives)

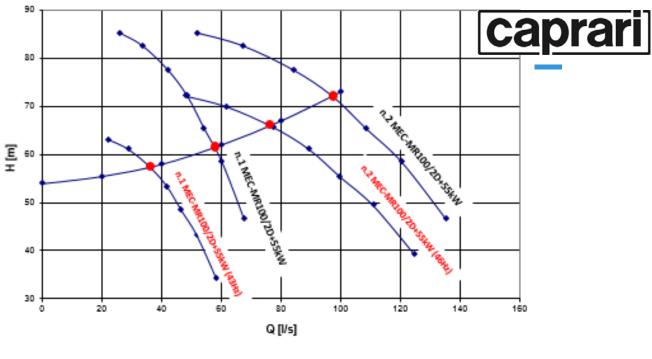
Annual water needs : 694.000 m³ HMT : 43 m Flow : 2x 53 l/s

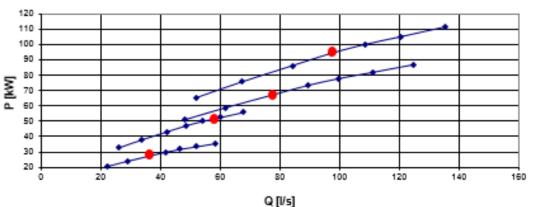
System Configuration

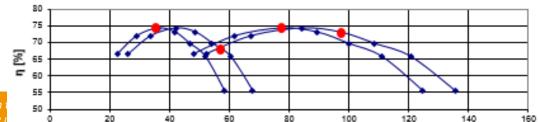
PV Generator:	120 kWp	2
PV Trackers :	1 x H1250 multirow (6 axes)	
Inverter :	2 x 55 kW	
Pumps :	2 x MEC-ARBHZ4/125C+45kW	
Irrigation System :	already exist (drip)	
Expected water production : 545.000 m ³ (80% FV- 20% GRID)		

Tamellalt: MOROCCO – Hybrid PV+Grid

Tamellalt: MOROCCO Hybrid PV+Grid






parallel pumps + frequency variation

with 110kW of maximum installed power it's possible to start work with 20kW and 43Hz

plant can be irrigated in sectors: 40-60-80-100 l/s

 $\langle \bigcirc \rangle$

This project has received funding from research and innovation programme

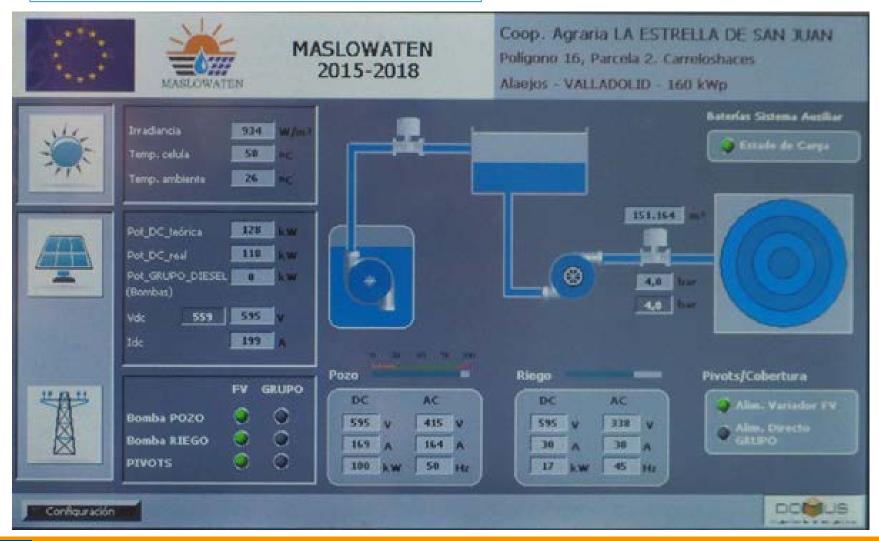
Alaejos: SPAIN – PV / Diesel

Owner : Coop. La Estrella de San Juan

Annual water needs : 360.000 m³ New well : tested in Nov-15 HMT : 140 m Flow : 45 l/s (162 m³/h)

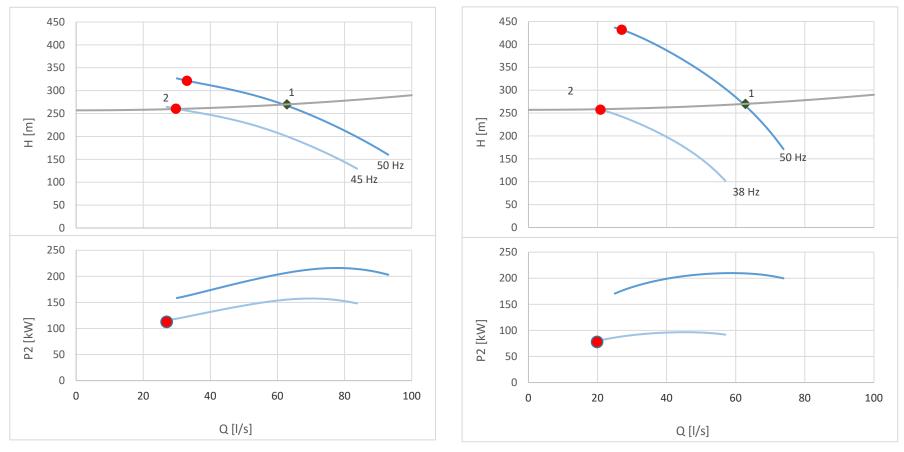
System Configuration

PV Generator:	160 kWp (MARTIFER)	
PV Trackers :	1 x H1250 multi-rows (6 axes) and	
	2 x H160 single-row (1 axe)	
Inverter :	2 x 110 kW (ND) and 2 x 37 kW (OMRON)	
Pumps :	92 KW submersible vertical electro-pump (CAPRARI)	
	n.1 E8P135-8/10C+MAC8125	
	30 kW centrifugal surface horizontal axe (CAPRARI)	
	n.1 MEC-A2/80A+30kW	
Water tank :	1000 m3	
Pivot:	5 towerS (RKD)	
Irrigation System :	22 electro-valves and 4 pivots (PROGRÉS + KOMET)	
Expected water production : 363.000 m ³		



Alaejos: SPAIN – PV / Diesel

Alaejos: SPAIN – PV / Diesel



E12S55/8A+MAC12300C-8V

E10S55/14A+MAC12300C-8V

Importance of the slope/field of the Performance Q/H curve choosing the biggest pump is not always the best choice

Villena: SPAIN – PV

Owner : CGUAV

Annual water needs : 650.000 m³ /22.000.000 m³ New well: completed in April-16 HMT : 288 m Flow : 63 l/s (227 m³/h)

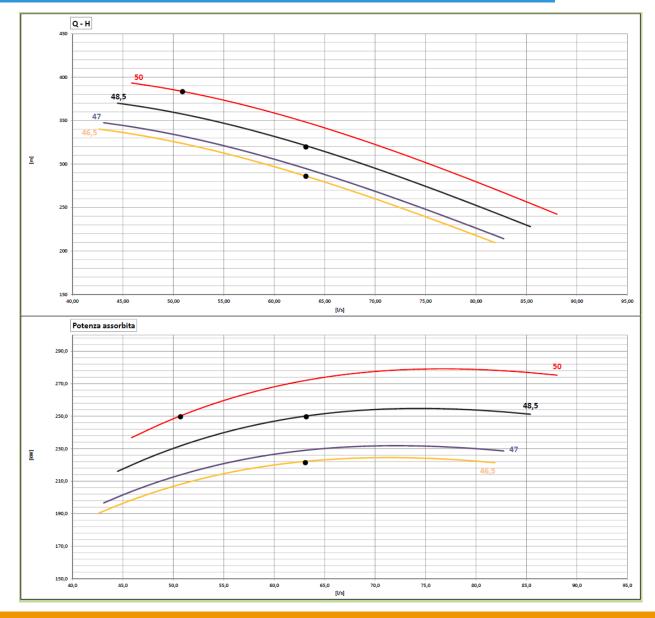
System Configuration

PV Generator:	360 kWp (MARTIFER)
PV Trackers :	2x H1250 multi-rows (8 axes) and
	2x H160 single-row (1 axe)
Inverter :	355 kW (ND) (OMRON)
Pump :	250 KW (P2) submersible vertical electro-pump (CAPRARI)
	E12S42X-12/5A+MAC12300/1C

Expected water production : 663.000 m³

Villena: SPAIN – PV

Villena: SPAIN – PV



Importance of seeking maximum flexibility and adaptability to the context

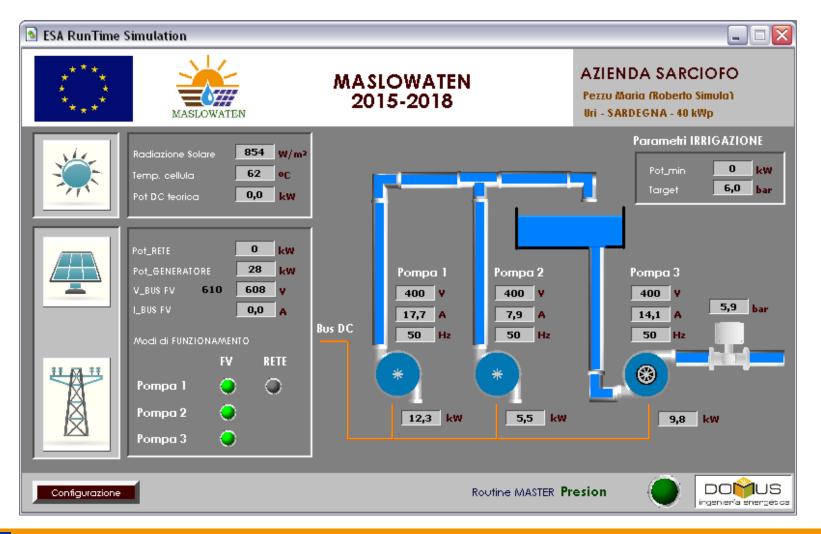
caprari

Uri: ITALY – PV / Grid

Owner : Roberto Simula

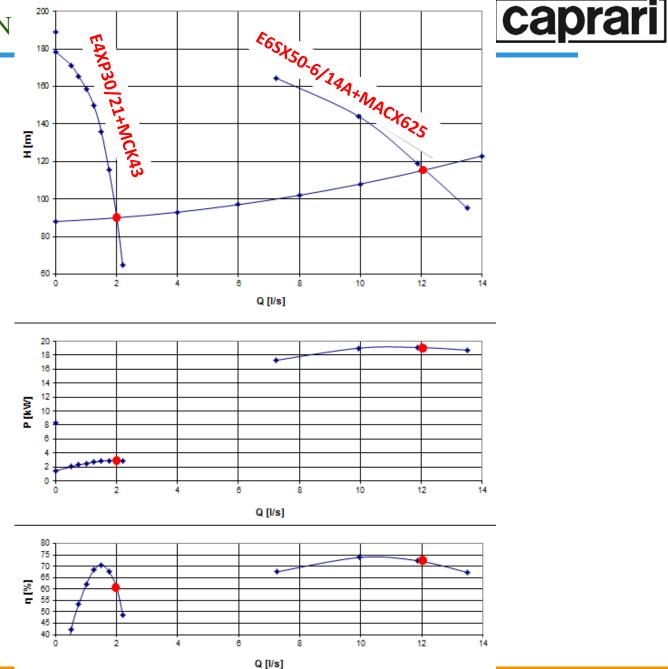
Annual water needs : 100.000 m³ Two wells : tested in Nov-15 HMT 1 and 2 : 90 m Flow : Well-1 \rightarrow 5-10 l/s Well-2 \rightarrow 3 l/s

System Configuration


System comparation		
PV Generator:	40 kWp (MARTIFER)	
PV Trackers :	2 x H160 single-row (1 axe)	
Inverter :	1 x 22 kW (ND) / 1x 5,5 kW and 1x 11 kW (OMRON)	
Pumps :	Well1- 18,5 KW submersible vertical electro-pump (CAPRARI)	
	n.1 E6SX50-6/14A+MACX625/2B	
	Well 2 - 3 KW submersible vertical electro-pump (CAPRARI)	
n.1 E4XP30/21+MCK43		
	Irrigation 7,5 kW centrifugal surface horizontal axe (CAPRARI)	
n.1 MDT50+M300752111		
New Irrigation Syster	n : Agronic 2500 and meteorological station (PROGRÉS)	
	Sprinckles (KOMET)	
Expected water production : 104.000 m ³		

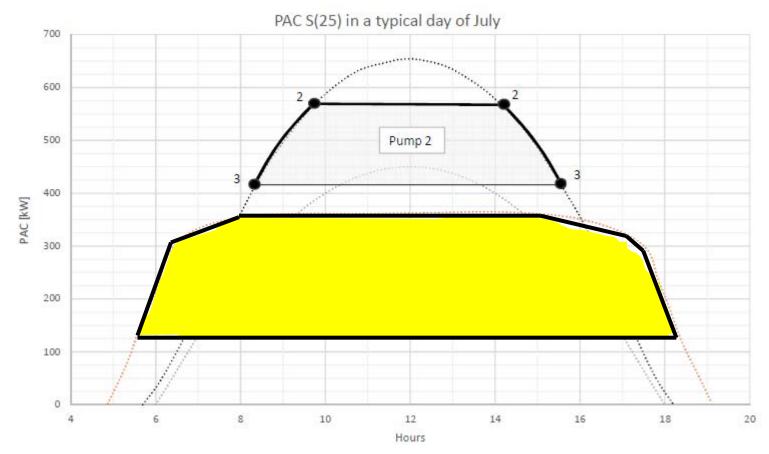
Uri: ITALY – PV / Grid

Uri: ITALY – PV / Grid


CAPRARI MEC-MR100/2D

CAPRARI E6SX50/14A+MAC625/2B

Importance of the size of the electric pump


This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No640771

Place for description/details of the activity (Conference, presentation etc) Page 36

Last but not least


Importance of the PV orientation system type single axis tracker / multi-axis tracker / fixed orientation

to obtain all this \Rightarrow competence and appropriate tools

CAMPUS DE EXCELENCIA INTERNACIONAL

Universidad Politécnica de Madrid Instituto de energía solar

SISIFO is a free web framework for simulating Photovoltaic Systems

Thanks for your attention, for more information please visit:

<u>www.maslowaten.eu</u> <u>www.caprari.com</u>

Alessandro Bertazzoni Area Manager CAPRARI S.p.A. Via Emilia Ovest 900, 41123 Modena <u>www.caprari.com</u> – tel. 059 897611

