Economic assessment of large power PV irrigation systems in the ECOWAS region

Luis Narvarte
Coordinator, MASLOWATEN
Solar Energy Institute
Universidad Politécnica de Madrid
Advantages
• Plug and play
• Low initial investment

Disadvantages
• Weak water sources
• Power limitation
• Tuning in factory
Advantages

• Large power
• Reliable water sources
• High efficiency and reliability

Disadvantages

• High initial investment
• On-site tuning
• High diesel cost and grid tariff

• Low grid reliability

• Farms far from the grid

IS LARGE POWER PV IRRIGATION FEASIBLE IN ECOWAS REGION?
• 7 countries

• 380 kWp on a North-South tracker

• 4 study cases:
 • Pumping to a water pool: substitution of Diesel for Grid
 • Direct pumping: substitution of Diesel for Grid

• www.sisifo.info

• Results: NPC, IRR, Payback period, LCoE
ECONOMIC ASSESSMENT

SCENARIO

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Benin</td>
<td>0.23</td>
<td>0.82</td>
<td>9.96</td>
<td>5.6</td>
<td>-0.2</td>
<td>5.8</td>
</tr>
<tr>
<td>Burkina Faso</td>
<td>0.25</td>
<td>0.94</td>
<td>16.24</td>
<td>5.6</td>
<td>2.9</td>
<td>2.6</td>
</tr>
<tr>
<td>Cape Verde</td>
<td>0.33</td>
<td>0.97</td>
<td>18.26</td>
<td>9.6</td>
<td>-0.9</td>
<td>10.6</td>
</tr>
<tr>
<td>Guinea</td>
<td>0.16</td>
<td>0.89</td>
<td>0</td>
<td>4.8</td>
<td>10.6</td>
<td>0</td>
</tr>
<tr>
<td>Liberia</td>
<td>0.56</td>
<td>0.83</td>
<td>35.35</td>
<td>13.6</td>
<td>5</td>
<td>8.2</td>
</tr>
<tr>
<td>Nigeria</td>
<td>0.20</td>
<td>0.55</td>
<td>17.46</td>
<td>16.9</td>
<td>9.6</td>
<td>6.7</td>
</tr>
<tr>
<td>Sierra Leone</td>
<td>0.26</td>
<td>0.78</td>
<td>17.27</td>
<td>18</td>
<td>4.2</td>
<td>13.24</td>
</tr>
</tbody>
</table>

- Ep ($/kWh): electricity price
- DP ($/l): diesel price
- t (%): corporate tax rate
- i’ (%): nominal interest rate
- f (%): annual GDP deflator
- i (%): real interest rate

NPC
IRR
Payback period
LCoE
IRR – water tank
• Diesel: 15 – 32%
• Grid: 19 – 47%

IRR – constant pressure
• Diesel: 8 – 20%
• Grid: 10 – 31%
PBP – water tank
- Diesel: 3 - 6 years
- Grid: 2 - 5 years

PBP – constant pressure
- Diesel: 5 - 10 years
- Grid: 3 - 9 years
LCoE – water tank
- Diesel: 50 – 83% of savings
- Grid: 53 – 84% of savings

LCoE – constant pressure
- Diesel: 30 – 76% of savings
- Grid: 33 – 76% of savings
SENSITIVITY ANALYSIS

- Diesel cost: ±25%
- Grid cost: ±10%
- PV size: 380, 150, 45 kWp

NPC
IRR
Payback period
LCoE
SENSITIVITY ANALYSIS

PBP

Diesel, to a water tank

Diesel, constant pressure

Electric Grid, to a water tank

Electric Grid, constant pressure
PV SIZE

<table>
<thead>
<tr>
<th>kWp</th>
<th>380</th>
<th>150</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>$/Wp</td>
<td>1.7</td>
<td>1.84</td>
<td>2.05</td>
</tr>
</tbody>
</table>

NPC values (x10^5$) obtained for the 380 kWp system (columns shadowed in grey) and for the two smaller irrigation systems considered in the sensitivity analysis.
Thanks for your attention, for more information please visit:

www.maslowaten.eu

To contact with us

WEB: www.maslowaten.eu

Twitter y Facebook: @maslowaten