Bulgarian Academy of Sciences

Opportunity for the Development of Photovoltaic Energy in Bulgaria

N. Tyutyundzhiev

18 April 2018
PV irrigation seminar

Central Laboratory of Solar Energy & New Energy Sources

Opportunity for the Development of Photovoltaic Energy in Bulgaria

MASLOWATEN seminar, Sofia,18 Apr 2018

- I. Legislation in PV sector
- II. PV systems current state
- III. Potential in Irrigation sector
- IV. New Developments
- V. Future Outlooks

I. Legislation in PV sector

EU frame: Directive 2012/27/EC (RES targets), Directive 2010/31/EC (Zero Energy Buildings)

National frame: ZEVI law (v.2015),

Energy Stock Exchange "web platform for intraday prices-min100kWh" (March 2018)

No more feed-in-tarifs, free market prices +premium for PV plants above 4MWp (July 2018)

National targets(2020): 16% RES in energy mix(OK-2015), 10% RES in transport sector National plan –NZEB (new buildings after 2018), National plan- E-mobility(2017)

Main funding: EU funds and grant schemes, small private investments National programme for EE in multi-family household buildings

Recent activity: PV market recovering after the low activity in 2015-2017

Short procedures only for rooftop PV projects up to 30 kWp in urban areas, 200kWp industrial roofs Moderate municipality energy projects for EF&RES in buildings

Small isolated PV projects intended for self-consumption

National energy figures:

Total installed PV power - 1 043 MWp, PV production - 1 325 472 MWh/yr

(DKEVR-2017)

(ESO)

Announced interest for new grid connections – 495 MWp (2018-2026)

Peak hourly load - 7.69 GW on Jan. 10 2017 (18:00)

PV installations in BG:

II. PV systems -current state

PV sector still in transition:

- -Transition of PV plants owners
- -Transition in prices of PV electricity
- Transition in business models

Grid Operators in BG

In MW	ESO	EVN	CEZ	Energo-Pro
Hydro PP, Micro Hydro PP	1470.8300	81.8674	185.0490	13.203
Wind PP	435.5	37.75	18.12	265.04
PV PP	275.781	494.866	140.475	100.854
Biomas and Biogas PP	13.189	1.83	6.334	0.285
Total:	2195.3000	616.3134	349.9780	379.382

II. PV systems -current state

Varna Airport

Reduction of Airport Carbon footprint

CO₂ Offsetting

PV system design:

PV plant power: 1.2 MWp PV yield prediction: 1 385 MWh/yr BMS system

Consumers:

- -Airfield lighting
- -AirControl tower
- -Navigation systems
- -HVAC in terminal

Shade and Glare Analysis & Simulations: seasonal and hourly effects

Dangerous zone:

- East part of runway Recomendations:
- texturized PV modules
- re-orientation -5° East

Solar glare with low to middle intensity max Irr: 10 mW/cm²

Temporary lost of visual sensitivity Risk intervals:

20-25 March, 17:30- 18:30 20-25 Sept., 17:30- 18:30

II. PV systems -current state

PV plants Monitoring and Performance optimization

Irreversible defects in p-n junction of Si solar cell

"Hot-spot" defect in single solar cell

Wide-area resistive load

Aging effect of EVA polymer

Pinhole breaktrough in solar cell

III. Potential in Irrigation sector

14 regional irrigation offices

Current state:

Only 2% of BG agricultural area is irrigated mainly from artificial lakes and dams (~6000) 300 Mln. m3 water for irrigation per year, typical source: micro-dams using open channels Limited human potential and financial resources

Big amount of small fragmented farms, problems with floods control Lack of feedback contacts and information grids (SWOT analysis)

National targets:

- -enhanced transfer of innovation practices
- -new information channels based on IT
- -enhanced municipality activity

Most popular agricultural plants:

Corn, wheat, rice, barley, vagetables potatoes

Shallow irrigation:

SW region - vegetables

Trakia region - vegetables, corn, rice

SE region - water-melon, tomato

NW region - corn, fruits

Deep water pumping:

NE region - wheat, water-melon

National strategy:

Problems:

- -40 yrs old infrastructure with high water losses due to leaks
- -unsettled ownership and responsibility
- -lack of professionals,
- -7 ministries involved in water management Proposals:
- usage of EU co-funding
- education of new specialists
- tendency for water savings
- enhanced resource minitoring

Total water volume collected in dams - 2 753 mln. m3 (2007)

Hybrid Energy Systems

Solar /Wind + Battery storage system connected to LV grid

IV. New Developments

Energy storage using superCAPs

EDLC supercapacitors - Graphene/Active Carbon + Polyaniline

Low-cost Technology: screen-printing, ink-jet printing

(R~ 1.5 x10⁻⁶ ohm-cm) (about 2630 m²/g)

Applications: Hybrid batteries PV module + flat supercaps

Flexible Electrical Measurements based on open source (Arduino)

Energy storage in hydrogen

Hydrogen (H₂) Air (O₂) and Water (H₂O)

IV. New Developments

PEM Fuel Cells

PV systems design

- High-land PV pumping systems for drinkable water
- Land irrigation using centrifugal pumps
- Solar heating and cooling using thermo-pumps

Hybrid Storage Systems technology

- PV module/carbon-based superCAPs systems
- Small solar electrolyzers/PEM fuel cell systems

Thank you for your attention!